Color image segmentation using multi-level thresholding approach and data fusion techniques: application in the breast cancer cells images

نویسندگان

  • Rafika Harrabi
  • Ezzedine Ben Braiek
چکیده

In this article, we present a new color image segmentation method, based on multilevel thresholding and data fusion techniques which aim at combining different data sources associated to the same color image in order to increase the information quality and to get a more reliable and accurate segmentation result. The proposed segmentation approach is conceptually different and explores a new strategy. In fact, instead of considering only one image for each application, our technique consists in combining many realizations of the same image, together, in order to increase the information quality and to get an optimal segmented image. For segmentation, we proceed in two steps. In the first step, we begin by identifying the most significant peaks of the histogram. For this purpose, an optimal multi-level thresholding is used based on the two-stage Otsu optimization approach. In the second step, the evidence theory is employed to merge several images represented in different color spaces, in order to get a final reliable and accurate segmentation result. The notion of mass functions, in the DempsterShafer (DS) evidence theory, is linked to the Gaussian distribution, and the final segmentation is achieved, on an input image, expressed in different color spaces, by using the DS combination rule and decision. The algorithm is demonstrated through the segmentation of medical color images. The classification accuracy of the proposed method is evaluated and a comparative study versus existing techniques is presented. The experiments were conducted on an extensive set of color images. Satisfactory segmentation results have been obtained showing the effectiveness and superiority of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

Color Image Segmentation by Multilevel Thresholding using a Two Stage Optimization Approach and Fusion

14 Abstract—In this paper, we propose a new color image segmentation method based on a multilevel thresholding algorithm and data fusion techniques. We have revised the Otsu method for selecting optimal threshold values for both unimodal and bimodal distributions, and tested the performance of the new automatic thresholding method called the TSMO (Two-Stage Multi-level Thresholding) on the colo...

متن کامل

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

A Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures

Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...

متن کامل

Designing an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform

Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic imagesrequire accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Image and Video Processing

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012